Triangle-free subgraphs in the triangle-free process

نویسنده

  • Guy Wolfovitz
چکیده

Consider the triangle-free process, which is defined as follows. Start with G(0), an empty graph on n vertices. Given G(i − 1), let G(i) = G(i − 1) ∪ {g(i)}, where g(i) is an edge that is chosen uniformly at random from the set of edges that are not in G(i − 1) and can be added to G(i − 1) without creating a triangle. The process ends once a maximal triangle-free graph has been created. Let H be a fixed triangle-free graph and let XH(i) count the number of copies of H in G(i). We give an asymptotically sharp estimate for E(XH(i)), for every 1 i ≤ 2−5n3/2 √ lnn, at the limit as n→∞. Moreover, we provide conditions that guarantee that a.a.s. XH(i) = 0, and that XH(i) is concentrated around its mean.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No Dense Subgraphs Appear in the Triangle-free Graph Process

Consider the triangle-free graph process, which starts from the empty graph on n vertices and in every step an edge is added that is chosen uniformly at random from all non-edges that do not form a triangle with the existing edges. We will show that there exists a constant c such that asymptotically almost surely no copy of any fixed finite triangle-free graph on k vertices with at least ck edg...

متن کامل

Dynamic concentration of the triangle-free process

The triangle-free process begins with an empty graph on n vertices and iteratively adds edges chosen uniformly at random subject to the constraint that no triangle is formed. We determine the asymptotic number of edges in the maximal triangle-free graph at which the triangle-free process terminates. We also bound the independence number of this graph, which gives an improved lower bound on the ...

متن کامل

Triangle-free subgraphs at the triangle-free process

We consider the triangle-free process: given an integer n, start by taking a uniformly random ordering of the edges of the complete n-vertex graph Kn. Then, traverse the ordered edges and add each traversed edge to an (initially empty) evolving graph unless its addition creates a triangle. We study the evolving graph at around the time where Θ(n) edges have been traversed for any fixed ε ∈ (0, ...

متن کامل

Colouring vertices of triangle-free graphs without forests

The vertex colouring problem is known to be NP-complete in the class of triangle-free graphs. Moreover, it is NP-complete in any subclass of triangle-free graphs defined by a finite collection of forbidden induced subgraphs, each of which contains a cycle. In this paper, we study the vertex colouring problem in subclasses of triangle-free graphs obtained by forbidding graphs without cycles, i.e...

متن کامل

On-Line 3-Chromatic Graphs I. Triangle-Free Graphs

This is the first half of a two-part paper devoted to on-line 3-colorable graphs. Here on-line 3-colorable triangle-free graphs are characterized by a finite list of forbidden induced subgraphs. The key role in our approach is played by the family of graphs which are both triangleand (2K2 + K1)-free. Characterization of this family is given by introducing a bipartite modular decomposition conce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011